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Abstract 
 
In 2010 Blog Track, there are two tasks including 

Faceted Blog Distillation Task and Top Stories 
Identification Task. We mainly focus on the Top Stories 
Identification Task. In this task, there are two issues to 
solve. The first issue is ranking the important news 
stories on the specified day, named Story Ranking Task. 
The second issue is named News Blog Post Ranking 
Task. News Blog Post Ranking Task is ranking the blog 
posts that are relevant to the news story and 
diversifying the topics of blog posts. 

In Story Ranking Task, our team Ikm100 
(NCKU_CSIE_IKMLAB) submitted three runs. In the 
first run, a news story is scored by its number of 
discussion posts. In the second run, our idea is that if 
the news story is discussed by more people and the 
supporting blog post is relatively important, the news 
story would be more important. In the last run, we use 
the “Relevant-Post Time-Entropy evaluation” to score 
the news story.  

In News Blog Post Ranking Task, we use the cosine 
similarity between the news story and the blog post, 
and also use importance of posts to extract the 
supporting blog posts of the news query. 
 
1. Introduction 

In TREC 2010, Blog track contains two tasks: 
Faceted Blog Distillation Task and Top Story 
Identification Task. Our team participates in the Top 
Story Identification Task. In TREC 2009, the Top 
Story Identification Task was a pilot search task 
addressing the problem of using blog data to identify 
top news stories [2].  

In TREC 2010, the Top Story Identification Task 
has two stages [1]: 
 
1. Story Ranking Task. 
2. News Blog Post Ranking Task. 

 

For the Story Ranking Task, it is different from the 
previous tasks in TREC2009. This task is treated as 
real-time event detection.  We have the limitation of 
using information in Blog’08 data. With a given query 
date Q, all the information of Blog’08 we used must 
have the timestamp smaller than Q or equal Q. This 
limitation fit to mimic a real-time environment. 
Besides, for each query date we have to submit ranking 
of 100 news stories with 5 categories. The categories 
are “Business”, “U.S.”, “Sport”, “SciTech” and 
“World”. 

For News Blog Post Ranking Task, the goal is to 
identify the top 50 relevant blog posts for each given 
news story with different period of time. Each ranking 
of blog posts should be diverse. It means that the blog 
posts should cover multiple aspects of the news stories. 
For each ranking, there are three different period of 
time described as follows: 
 
1. The timestamp of blog posts should equal or 

smaller than the query timestamp 
 
2. The timestamp of blog posts should equal or 

smaller than the query timestamp + 1 days 
 

3. The timestamp of blog posts should equal or 
smaller than the query timestamp + 7 days 

 
In this paper we first describe the data 

preprocessing in Section 2, then we introduce our 
method for the news stories ranking and the post 
ranking in Section 3 and Section 4, respectively. We 
report our performance in Section 5. Finally, the 
conclusion for our participation is in Section 6. 
 
2. Data Preprocessing 

 
The dataset in the blog track provided by TREC is 

the Blogs08 collection. It has various blogs from 
different blogospheres. We can extract a lot of 
information from this dataset, like timestamp, post 



titles, post contents, and post comments, etc. The 
preprocessing is a laborious work to exactly extract the 
information we need from every different blogs. 

Blogs08 dataset contains feed files, permalink files, 
and blog homepages, and it is crawled over a 13-month 
period from early 2008 to early 2009. The crawled 
results contain 1,303,520 feeds and 28,488,766 
permalink documents. In our experiment, we only 
focus on all feed files because they contain main 
sentences of each blog post and we think it is enough 
for this task. For each blog post, we extract the 
corresponding information from feed files, including 
title, content and so on.  

In the second preprocessing step we filter out all 
non-English posts and stop words and apply the 
stemming process. Then we index each blog post title 
and content. 

In this year, the data of news story is the TRC2 
newswire corpus. The TRC2 is a collection of 
1,613,707 news stories from Thomson-Reuters. First, 
we filter out the news which contains the error 
messages like “SERVICE ALERT”. Second, we 
remove the news stories in the document, “topNews-
blacklist.docnos.txt.gz”. Then we create a separated 
index for each news story. 

 
3. Approach for Story Ranking Task 
 

Our three ranking methods are all based on the 
headline-post similarity network we build. We 
submitted three runs with run tags Run1 (ikm100jing), 
Run2 (ikm100bindog), and Run3 (ikm100ufan). In 
Run1, we use the Sum of Cosine Similarity Approach. 
In Run2, we use the Average TF-IDF Approach. And 
in Run3, we use the Relevant-Post Time-Entropy 
Evaluation Approach. After ranking by our approaches, 
we do duplicated detection and block list for each run 
tag, and then get a set of ranking results as shown in 
Figure 1. The first set of ranking results, NReR, will be 
re-rank into a new set of ranking results as named ReR. 
Finally, NReR and ReR should be fitted to format of 
the output in the last step. 

 

 
 

Figure 1 : Flow chart of NReR and ReR 
 

3.1 Headline-Post Network 
 
For each news corpus in TRC2, first, we build the 

weight of each word by TF-IDF (Term Frequency-
Inverse Document Frequency) technique. There are 
two types of TF-IDF of a word in our methods. One is 
to use the information of headlines to build the weight 
of each word and is called TF-IDFh. Another is to use 
the information of contents and is called TF-IDFc. 

Furthermore, we consider that the information of 
headlines is more important than the contents. Thus, 
we give each word a new value of TF-IDF weight as 
shown in the following equation: 

 
TF- IDFnew = 2 ∗ TF- IDFh + TF- IDFc 

 
We also do the same TF-IDF calculating for the posts 
in Blogs08. 

Second, for each “query date”, we calculate pair-
wise cosine similarity between each news story and 
each blog post. For each query, the constructed 
network contains more than 100 million headline-post 
links. In order to filter out noises information in them, 
we only store the headline-post links which the 
similarity value is larger than 0.1. 
 
3.1.1 Run1: Sum of Cosine Similarity Approach 
 

Score(h) = � sim(h, p)
p∈T

 

 
The score of each news story h is assigned as the 

sum of the cosine-similarity between news story h and 
post p that is posted during the timestamp T. In this run, 
we only consider the post whose cosine-similarity is 
larger than 0.3. The timestamp T is between the 
headline day d and d-1.  
 

 
Figure 2 : Example for approach in Run1 

 
For example, there are a news story h and three 

posts p1, p2 and p3. In Figure 2, the value of sim(h, p1) 
is 0.8 , sim(h, p2) is 0.5 , and sim(h, p3) is 0.4 . Then 
the news story gets the Score(h) that value is 1.7 . 
 
3.1.2 Run2: Average TF-IDF Approach  
 



The main idea in this run is that the news story is 
more important if it is discussed by more people, and a 
more important post has more important words.  Here, 
we only use the posts on the query day T and only 
consider the post whose cosine-similarity is larger than 
0.35. In next step, we calculate the average TF-IDF 
(post_avg_tfidf) for each blog post. The score is 
defined as: 

 
Score(h) = � post_avg_t�idf(p)

p∈T

∗ sim(h, p) 

 

 
Figure 3 : Example for approach in Run2 

 
Consider the example in Figure 3. The news story h 

has two associated posts p1 and p2. The value of sim(h, 
p1) is 0.8 and sim(h, p2) is 0.5. The post p1 contains 
Word1 and Word2. The post p2 contains Word3, 
Word4 and Word5. The score of h is then calculated as 
follows: 

 
Score(h) = �2+3

2
� ∗ (0.8) + �2+1+3

3
� ∗ (0.5) 

 
3.1.3 Run3: Relevant-Post Time-Entropy 
Evaluation Approach 
 

In Run3, we propose a method that collects and 
analyzes the entropy value of the posts, called 
“Relevant-Post Time-Entropy Evaluation”. For a query 
date T, we use all the posts in the range from T-5 to T. 
In this run, we also consider the post whose cosine-
similarity is larger than 0.35 to cut off the irrelevant 
posts. 

In Figure 4, after extracting the publish time from 
dataset, the relevant posts are shown according to their 
published day on the time line. It means for the news 
story we can selected a set of relevant posts, and 
separate each posts by published day on the time line. 
We assume that before the hot story happened, this 
story may get higher attention and some bloggers 
would start to discuss the hot story in their posts. We 
call this case the posting-bursty behavior, as the 
example at 8/09 in Figure 4. We used the entropy value 
E to model the behavior as follows. 

 
 

 
Figure 4 : Example of Relevant-Post Time-Entropy 

Evaluation 
 

E = − � qi ∗ log(qi)
T

i=T−5

 

 
‘E’ means the entropy value of relevant posts. ‘qi’ 

means the probability of relevant posts appearing in 
date i. Each news story h has a score with the ratio 
between the entropy value and the bursty distance D, 
defined as 

Score(h) =
(1 − E)

D
, 

 
where ‘D’ means the distance between the bursty date 
and the news date. Consider the example in Figure 4. 
Each black dot is a post. We find all the relevant posts 
with the news story which the date was from 8/06 to 
8/11, and we find a bursty date 8/09. Then we get a 
distance D=2 between bursty date and news date in this 
example. 

Then we calculate ‘E’ as follows: 
 
E = −�0 + �28� ∗ �log 2

8� + �48� ∗ �log 4
8� + �18� ∗

�log 1
8� + �18� ∗ �log 1

8� + 0�=0.53, 
 

and the score of h is calculated as follows: 
 

Score(h) =
1 − 0.53

2
 

 
3.2 Duplicated Detection and Block List 

In the TRC2 corpus, we found that there are many 
duplicated news in one subject. That is, if a news 
article is partially updated, it becomes a new version of 
the original news. Our goal is to detect the duplicated 
news after any revision. Our approach is described as 
follows:  

 
1. We calculate the pair-wise similarity for each 

news story in query’s ranking results. 
 

2. For each news story h we extract the news 
story h’ which has the higher similarity larger 
than 0.9.  



 
 

3. For each h we have a news story group that 
contains h and h’. Then we save the latest 
news from the news story group and add the 
other news stories into the block list B.  

 
Repeating the third step, we have the block list B 

for all news stories. Finally, we remove the news 
stories in the block list B for each query’s news story 
ranking results. 

Then we got a set of three ranking results of news 
stories with different runs: Run1, Run2, Run3, and we 
call this set of ranking results as Non Re-ranking 
Results (NReR). NReR will be re-ranked by the 
effective terms described in Section 3.3, and we will 
have a new set of ranking results, called Re-ranking 
Results (ReR). 

 
3.3 Effective Terms Re-ranking 

 
In this section, we are curious about whether some 

effective terms in the past hot news will have a positive 
influence for news stories ranking in the future or not. 
We build monthly effective terms list Mi for some 
month ID i, where i is the integer from 1 to 13. For 
example, M3 present the effective terms list for March, 
2008 and M13 specially presents for January, 2009. 

First, we do not consider the news stories which do 
not have any word that has its IDF value larger than 
1.5. We then select top 40 news stories in each run of 
NReR for each query.  

Second, in order to build Mi, we select effective 
terms from the top 40 news stories of the queries in its 
previous month. For instance, the effective terms in M5 
is selected from the top 40 news stories from the 
queries in April, 2008. The queries in April from the 
dataset are 2008-4-2, 2008-4-19 and 2008-4-23. 
Besides, in order to build M1, we add two queries of 
2008-1-1 and 2008-1-2. We then choose effective 
terms from extracted news. Each term is selected when 
we thought it can be an important term in news stories. 
Each member is assigned 57 news of each month in 
average.  

Third, for each query in i-th month, the news stories 
will be rescoring by the equation in the following 
equation. 

Score′(h) = � Score(h) ∗ eTF-IDF(w,h)

w∈Mi

 

Score(h) means the original score of the news story 
h. Score’(h) means h is enhanced by those effective 
terms by the formula illustrated for each w belongs to 
Mi. The TF-IDF(w, h) means the TF-IDF value of the 

term w in the TRC2 news story h. If the w does not 
exist in h, then the value of TF-IDF(w, h) will be zero.  

After the rescoring, we can re-rank the news stories 
and got a new set of re-ranking results (ReR). The re-
ranking flow chart is also shown in Figure 1. 
 
3.4 News stories Classification 
 

Blog task of this year is different from tasks in last 
year. The difference is that we have to judge the 
category of each extracted news story. For a given time 
query, we have to return the top 100 news stories 
ranking for each category. Unfortunately, the TRC2 
dataset do not contains category information of news. 
Thus, we use the tool, “Libsvm”, to build a classifier to 
classify our news.  

First, we crawled the news stories during the period 
from 2008/04 to 2008/06 for each 5 category as 
training set. There have total 1037 news stories for 
each category. Then we construct the inverted index of 
the training set, and we use the vector of TF-IDF 
values to represent each news story. We train a model 
according to the training set, and then use this model to 
predict the category of each news story in TRC2 
corpus.  
 
3.5 Format of Output File for Story Ranking 
Task 

 
At the last step (D) shown in Figure 1, we have to 

fit the format of output files. For each numbered 
"query date", we select top 100 news stories ranking 
for each 5 categories. We already have the category of 
each news story from Section 3.4. Format of output file 
is like the sample [1] in Figure 5. 

 

 
Figure 5 : Format of output file 

 
Finally, we have two set of final results, Standard-

NReR and Standard-ReR. Each set of final results 
contains 3 runs for our different approaches. 

 
 Standard-NReR : Runs of Run1, Run2, Run3 
 Standard-ReR  : Runs of Run1, Run2, Run3 
 
Our team submitted 3 runs for Story Ranking Task. 

We submitted 3 runs in Standard-ReR. And we will 
have comparison of statMap between Standard-NReR 
and Standard-ReR in Section 5. 

 



 
 
 

 
 

 
 

 
 

4. Approach for News Blog Post Ranking 
Task 

 
In this stage, we use the cosine similarity value 

between the headline and the post, and also use the 
count of post’s comment to score the posts.  

 
Score(p) = (α)�sim(h, p)� + (1 − α)(Norm_Comment) 

 
sim(h, p) means the value of cosine similarity 

between the news story h and the blog’s post p. 
“Norm_Comment” means the normalized value of 
count of post’s comment. Term α means the weight of 
the cosine similarity comparing with count of post’s 
comment. 

For each news story of query, we selected relevant 
posts with their cosine similarity larger than 0.35.  

 
 
 

 
 

 
 

 
 
Before we score and rank the relevant post. We 
classify posts to 5 categories (“Business”, “U.S.”, 
“Sport”, “SciTech” and “World”). After post ranking, 
we select the post which only has the same category 
with the news story to submit our results. For example, 
if the query of the news story belongs to business 
category, then we only rank those posts which belong 
to the business category. We submitted 3 runs with 
three different α in this stage. We set α = 0.25, 0.5, 
and 0.75 for each run respectively. 

 
5. Results of Runs 
 

Our team IKM100 submitted 3 runs named Run1 
(ikm100jing), Run2 (ikm100bindog) and Run3 
(ikm100ufan) in Stories Ranking Task. All runs are 
automatically generated and ranked. The performance 

Group Runs TRC2-
Fields 

Mean 
StatMAP 

StatMAP by Category 

Business Sci-Tech Sport U.S. World 

POSTECH_KLE KLERUN1 HC 0.2206 0.1851 0.1821 0.1916 0.2458 0.2986 

ICTNET ICTNETTSRun2 HC 0.2138 0.0969 0.1898 0.2405 0.3025 0.2396 

ikm100 

Run1 HC 0.2151 0.1141 0.2483 0.1725 0.3897 0.1504 

Run2 HC 0.2107 0.1146 0.2390 0.1451 0.3870 0.1715 

Run3 HC 0.2043 0.0823 0.2425 0.1699 0.3827 0.1441 

Runs Alpha-nDCG@10 P-IA@10 nERR-IA@10 

Run1,α = 0.25 0.3335 0.1049 0.2907 

Run2,α = 0.5 0.3750 0.1211 0.3332 

Run3,α = 0.75 0.4075 0.1309 0.3720 

 
Runs Mean 

StatMAP 
StatMAP of each category 

Business Sci-Tech Sport U.S. World 
Standard-NReR Run1 0.2339 0.1200 0.2809 0.1716 0.4662 0.1307 

Run2 0.2243 0.1191 0.2725 0.1364 0.4393 0.1543 

Run3 0.2139 0.0874 0.2732 0.1704 0.4192 0.1201 
Standard-ReR Run1 0.2151 0.1141 0.2483 0.1725 0.3897 0.1504 

Run2 0.2107 0.1146 0.2390 0.1451 0.3870 0.1715 

Run3 0.2043 0.0823 0.2425 0.1699 0.3827 0.1441 

Table 1 : Performance of submitted runs for Story Ranking Task 

Table 2 : Performance of submitted runs for News Blog Post Ranking 

Table 3 : The comparison of statMAP between Standard-NReR and Standard-ReR for Story Ranking Task 



of our runs and runs of other participants in Story 
Ranking Task is shown in Table 1. 

In News Blog Post Ranking Task, our team 
submitted 3 runs named ‘Run1’, ’Run2’ and ‘Run3’ 
with different α values shown in Table 2. We select 
the evaluation of alpha-nDCG@10, P-IA@10 and 
nERR-IA@10 to show our performance as shown in 
Table 2. 

TREC organizers have provided test programs of 
evaluation on TREC website. We have download the 
program files of blog story ranking task and implement 
the evaluation process on Ubuntu OS. We also 
implement some extra evaluation. The comparison of 
statMAP between Standard-NReR and Standard-ReR 
is shown in Table 3.  
 
6. Conclusions 
 

In TREC 2010, we focus on the Story Ranking of 
the Top Story Identification Task. We propose three 
general methods based on the headline-post network. 
In this network, we identify each cosine similarity 
between post and news story. For the category 
classification, our team crawl the news from Reuters 
website and use the “Libsvm” to classify news stories 
in TRC2 dataset. Additionally, we found something 
interesting that the effective term list we retrieved is 
not as useful as we expected. The performance of 
Standard-NReR outperformed Standard-ReR according 
to statMAP. This means that the influence of term list 
will shift with time and a better approach should be 
developed to find the useful effective terms. 

In the News Blog Post Ranking, our method does 
not use diversity features to rank the posts.  We use the 
blogger’s attention feature, i.e. the number of post’s 
comments. This feature helps us to identify popular 
post for the news story. We also use cosine similarity 
to judge the relevance between post and news story. 

In the future work, we focus on exploring links 
between blogs and applying other suitable models to 
the Top Story Identification Task. The work will try to 
quantify blogger’s attention to the top stories and see 
how we can use more characteristics of the 
blogosphere.  
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